
NRF5 - Programmation avec nRF Connect SDK

De la théorie à la pratique

Objectives

Learn how to develop, configure, debug and trace Zephyr applications
Devicetree and Kconfig usage and development
Using west and writing west manifest
Zephyr real time multitasking overview
Understand the Zephyr kernel Services and ecosystem
Learn communication and synchronization mechanisms
Understand Zephyr memory management and data structures
Understand User mode and kernel mode
Writing a device tree, and driver
Using common subsystems

Course environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisite

Good C programming skills (see our L2 - C language for Embedded MCUs course)

Duration

Total: 5 days
From 40% to 50% of training time is devoted to practical activities
Some Labs may be completed between sessions and are checked by the trainer on the next session

Environnement du cours

Cours théorique
Support de cours imprimé et au format PDF (en anglais).
Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et
pédagogique.

/

NRF5 - Programmation avec nRF Connect SDK jeudi, 12 février 2026

Activités pratiques
Les activités pratiques représentent de 40% à 50% de la durée du cours.
Elles permettent de valider ou compléter les connaissances acquises pendant le cours théorique.
Exemples de code, exercices et solutions
Un PC (Linux ou Windows) par binôme de stagiaires (si plus de 6 stagiaires) pour les activités pratiques avec, si approprié,
une carte cible embarquée.
Le formateur accède aux PC des stagiaires pour l'assistance technique et pédagogique.

Une machine virtuelle préconfigurée téléchargeable pour refaire les activités pratiques après le cours
Au début de chaque demi-journée une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours
répond à leurs attentes et l'adapter si nécessaire

Audience visée

Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus.

Modalités d'évaluation

Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise,
ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.
Les progrès des stagiaires sont évalués de deux façons différentes, suivant le cours:

Pour les cours se prêtant à des exercices pratiques, les résultats des exercices sont vérifiés par le formateur, qui aide si
nécessaire les stagiaires à les réaliser en apportant des précisions supplémentaires.
Des quizz sont proposés en fin des sections ne comportant pas d'exercices pratiques pour vérifier que les stagiaires ont
assimilé les points présentés

En fin de formation, chaque stagiaire reçoit une attestation et un certificat attestant qu'il a suivi le cours avec succès.
En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation
différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en
entreprise le cas échéant.

Plan

Premier jour

Introduction to Zephyr

Zephyr Project
Zephyr Ecosystem
Why use Zephyr
Install and use Zephyr
Build and Configuration Systems

West
CMake
Zephyr SDK

Application components and structure
West manifest

Configure Zephyr

Overview
Kconfig

Default configuration
Interactive configuration tools
Config fragments

Devicetree
Syntax
Standard properties
Initial devicetree source

NRF5 - Programmation avec nRF Connect SDK jeudi, 12 février 2026

Access devicetree from source code
Best practices

Exercise : Write a device tree overlay

Zephyr Without Threads

Operation without Threads
GPIO subsytem
Utilities

Container_of
For_each

Data Structures
Single-linked List
Double-linked List
Ring Buffers

Exercise : Hello World from Zephyr, configure and blink LEDs using Zephyr
Exercise : Manage Zephyr linked list and understand container_of macro

Second jour

Thread Management

Thread Fundamentals
Thread Control Block
Creating Threads
Threads Priorities
Changing Thread Priority
Thread States

Main and Idle Threads
Delays
Suspending Threads
Kernel Structures

Simple linked-list ready queue
Red/black tree ready queue
Traditional multi-queue ready queue

Thread Custom Data
Exercise : Create and manage threads
Exercise : Create periodic threads

Tracing and logging

Runtime Statistics
Scheduling Traces

User-Defined Tracing
Percepio Tracealyzer

Exercise : Create config fragment for visual trace diagnostics using Tracealyzer

Memory Management in Zephyr

Memory Managers
Dynamic memory managers

K_heap
System heap
Memory Slabs
Memory Blocks

Heap Listeners
Thread Resource Pools
RAM/ROM reports
Stack information

NRF5 - Programmation avec nRF Connect SDK jeudi, 12 février 2026

Stack Overflow detection
Stack analysis

Exercise : Understand dynamic memory allocation in Zephyr
Exercise : Display threads information and detect stack overflow

Troisième jour

User Mode

Overview
Memory Domains

Partitions
Logical apps

Syscalls
Kernel objects
Permissions

Resource Management and Synchronization

Mutual Exclusion
Mutexes
Gatekeeper threads
Critical Sections
Atomic
SpinLocks
Semaphores
Events
Polling

Exercise : The producer-consumer problem, synchronize and avoid concurrent access problems
Exercise : Understanding event bit group by synchronizing several threads

Data Passing

Message Queues
Queues

FIFOs
LIFOs

Mailboxes
Pipes
Stacks
Zephyr Bus (Zbus)

Zbus overview
Elements
Usage

Exercise : Create a print gatekeeper thread using message queue
Exercise : Synchronous communication using mailboxes

Quatrième jour

Interrupt Management

Threads and Interrupts
Interrupts in zephyr
Interrupts on ARM Cortex-M
Handler thread
Queue within an ISR
Workqueue Threads

NRF5 - Programmation avec nRF Connect SDK jeudi, 12 février 2026

Exercise : Understand how to wait on multiple events and interrupt safe APIs
Exercise : Understand how to pass data using Queues from an interrupt to a thread
Exercise : Create and submit work items from interrupts to custom WorkQueue

Software Timers

Timers
Defining a Timer
Using a Timer Expiry Function

Timer types
One-shot timers
Auto-reload timers

Timer Commands
Exercise : Understand the use of one-shot and auto-reload timers

Modules

Why to use modules?
Module structure
Out-of-tree module
YAML files
Module CMakeLists.txt

Exercise : Create a simple hello world module

Kconfig

Advantages
Kconfig Options in Zephyr RTOS
Configuration System
Writing custom Kconfig Options
Kconfig extension
Using Kconfigs

Exercise : Create a module that uses custom Kconfig options

Cinquième jour

Zephyr device driver model

Introduction to Device Drivers
Overview of the Zephyr device driver model
Standard Drivers
The struct device
Subsystems
API Extensions
Initialization Levels
Dependencies between device drivers
Define devices programmatically

Exercise : Create a driver that respects the Zephyr Device Driver Model and define devices

Device Trees in Zephyr

Overview of Device Tree (DT) and its role in Zephyr
Device Tree VS Kconfig
Device Tree node structure
Device Tree bindings
Overlay and yaml files
APIs to access device tree properties
Write device drivers using device tree APIs
Device Tree in Zephyr VS Linux

NRF5 - Programmation avec nRF Connect SDK jeudi, 12 février 2026

Adding In-Tree Code to Zephyr Source Code
Common properties

compatible
reg
interrupts

Exercise : Create a driver that uses custom device tree and Kconfig
Exercise : Writing in-tree drivers

Power Management

Overview
System Power Management
Device Power Management

System-Managed
Runtime

Power domains
Exercise : Write a driver compatible with power management subsystem

Renseignements pratiques

Renseignements : 5 jours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Dernière mise à jour du site: jeudi, 12 février 2026 à 12:04:34 UTC+1 (Europe/Berlin)
https://www.ac6-formation.com/fr/

https://www.ac6-formation.com/fr/

