
oL30 - Classic and Modern C++ for Embedded Systems

Objectives

Master the C++ language
Use C++ Template (generic code) in Embedded Systems
Master the C++ Advanced aspects such as polymorphism, single and multiple inheritances.
Learn to redefine the C++ operators for dynamic memory allocation in embedded applications
Manage C++ exceptions for Secure Embedded applications
Use C++ objects to handle serial transmission / reception of character strings
Discover the modern C++ features
Learn the language changes in C++11, C++14, C++17 and C++20
Discover the new functionalities added to the standard library
Learn advanced modern C++ features like perfect forwarding
Moving from traditional C++ to modern C++
Emphasizing the essential modern C++ features used in embedded application

Labs are conducted on a QEMU-emulated ARM-based board

Prerequisite

C programming skills (see our oL2 - C Language for Embedded MCUscourse)

Course Environment

Theoretical course
PDF course material (in English).
Course dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the
Teams video-conferencing system.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
Eclipse environment and GCC compiler.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Duration

Total: 30 hours
5 sessions, 6 hours each (excluding break time)
From 40% to 50% of training time is devoted to practical activities
Some Labs may be completed between sessions and are checked by the trainer on the next session

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

/
https://www.ac6-formation.com/en/cours.php/cat_oLANG/ref_oL2/c-language-for-embedded-mcus


oL30 - Classic and Modern C++ for Embedded SystemsTuesday 20 May, 2025

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Session

Introduction to C++ for industrial systems

Introduction to object oriented programming
History and definition
Overview on C++98/C++03/C++11/C++14/C++17/C++20
Modern C++ objectives
Switch from C to C++
Embedded C++
How to write optimized embedded code

Exercise: Understand function mangling
Exercise: Function inlining
Exercise: Volatile variable handling

C++ and embedded systems

Object Oriented Programming in C++
Encapsulation
Classes and objects
Attributes and member functions
Object construction and destruction
Construction parameters
Copy constructor
Object composition and container
Scope qualifier operator

Exercise: Declaring classes and methods
Exercise: Working with default, copy and parameterized constructors
Exercise: Understand the differences between composition and aggregation

Second Session

Operator Overloading

Optimizing parameter object passing
Overloading operators by member functions
Overloading operators by friend functions
Memory management operators overloading

Exercise: The assignment operator
Exercise: overloading operators



oL30 - Classic and Modern C++ for Embedded SystemsTuesday 20 May, 2025

Simple Inheritance

Specialization by addition and substitution
Derivation and access rules
Construction during inheritance
Inheritance polymorphism
Virtual methods

Exercise: Understand inheritance

Persistent and flashable objects

Constant and partially constant objects
Persistent objects
Flashable objects

Exercise: Creating constant, mutable, persistent and ROMable objects

Enhancing security with exceptions

Launching, capturing and handling exceptions
Retriggering exception
Exceptions specifications
Handling unexpected exception
Exception objects of the C++ standard library

Exercise: Handle errors using exceptions
Exercise: Unexpected exceptions management

Third Session

C++ advanced techniques

Member pointers
Generic objects and templates

Classes and generic functions
Templates overloading
Specializing templates
STL (Standard Template Library)
Templates in embedded systems

Polymorphic objects
Virtual objects and abstract classes
Specializing objects by simple inheritance

Building derivate objects
Access control rules for inherited objects
Specializing objects by multiple inheritance
Conflicts resolution by scope operator
Virtual inheritance

Exercise: Generic classes and functions
Exercise: Understand virtual methods by subclassing a generic Device class
Exercise: Understand multiple inheritance and virtual bases

Fourth Session

Introduction to modern C++

Overview
Storage class specifiers
Uniform initialization
C++ Named Requirements



oL30 - Classic and Modern C++ for Embedded SystemsTuesday 20 May, 2025

Automatic type deduction
The auto keyword
The auto keyword as a return type from a function
Using auto for declaring function signatures
Automatic constant references
Forwarding references
Advantages of using auto in embedded systems

Exercise: Using auto to declare variables

Keywords

Enum class
override and final
Inline variables
nullptr
static_assert
noexcept
constexpr and if constexpr
decltype
Defaulted and deleted functions

Implementing a thread-safe singleton
Exercise: Using modern C++ keywords
Exercise: Create a singleton using modern C++

New functionalities

Structured binding
Range-based for loops
Nested namespaces and namespace aliases
Alignment

Alignas
Alignof

Move semantics and r-value references
Copy-constructing and Move-constructing
r-value references
Perfect forwarding

Exercise: Using the new for loop syntax
Exercise: Using std::tuple
Exercise: Move semantics performance advantages on embedded systems

Modern C++ Standard Library

Standard Library
std::optional
std::variant
std::any
std::byte
std::hash
Filesystem library

Literals
Cooked literals
Standard literal operators
Raw literals
Raw string literals

Random number generation
Random number generation engines
Random number generation distributors

Containers
std::array
std::forward_list



oL30 - Classic and Modern C++ for Embedded SystemsTuesday 20 May, 2025

Unordered associative containers
Exercise: Using the new elements added to the standard library
Exercise: Using std::optional

Fifth Session

String Manipulation

New string Types
std::u16string
std::u32string

Basic string view
Converting between numeric and string types
Elementary string conversions
Input/output manipulators

std::get_money, std::put_money
std::get_time, std::put_time
std::quoted

Regular expressions
Format of a string
Parsing the content of a string
Replacing the content of a string

Exercise: Using String class and String literals

Concurrency and Multithreading

Introduction
Thread
Atomic operations

Atomic features
Non-class functions
Atomic flag
Memory order

Mutex
Avoiding using recursive mutexes

Sending notifications between threads
Condition variables
Future and Promise
Task and Async
Modern C++ and RTOS

Exercise: Blink synchronously 4 Leds

Lambda functions

Syntax of lambdas
Defining lambdas
Using lambdas

Using lambdas with standard algorithms
Assigning lambdas to function pointers
Lambdas and std::function
Writing a function that accepts a lambda as parameter

Polymorphic lambdas
Recursive lambdas

Exercise: Understanding lambda
Exercise: Using lambda to modify and display a vector

Dynamic memory management

Memory Management



oL30 - Classic and Modern C++ for Embedded SystemsTuesday 20 May, 2025

Memory Errors
Smart Pointers

Raw Pointers
Automatic pointers
Unique Pointers
Shared Pointers
Weak Pointers

Exercise: Override new and delete
Exercise: Understanding unique and shared pointers

Renseignements pratiques

Inquiry : 30 hours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 20 May, 2025 at :
https://www.ac6-formation.com/en/

https://www.ac6-formation.com/en/

