
NR3 - NXP + FreeRTOS + West

FreeRTOS with NXP MCUXpresso

Objectives

Understand MCUXpresso SDK (MCUXSDK) structure
Manage multi-repository projects using Zephyr West
Use Kconfig and prj.conf for configuration
Create and integrate custom boards
Extend projects with FreeRTOS
Get an overview of Cortex-M architecture

Discover the concepts of real time multitasking
Understand Real Time constraints
Understand the FreeRTOS architecture
Discover the various FreeRTOS services and APIs
Learn how to develop, debug and trace FreeRTOS applications

Best practices for large MCUXpresso/FreeRTOS projects

Prerequisite

C Language knowledge (see for example our L2 training course)
Familiarity with Git and command-line tools

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version for face-to-face courses.
Online courses are dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
For remote trainings:
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

For face-to-face trainings:
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

/


NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First day

Introduction to MCUXpresso SDK

SDK structure and components
Toolchains, CMake and Ninja integration
Application structure and examples

West Tool

Overview
Application components and structure

Application
Modules
West workspace

Why West? Problems solved
West as a meta-tool: repository + commands
Alternatives (git submodules, repo) and limitations
West

West structure
Using west
West manifest
West commands

West topologies
Anatomy of west.yml
Specific commands and common extensions

Init, update, list, config
Build, debug, attach, flash
Other common commands

Extending West with custom commands
Exercise: Getting started with West and MCUXpresso SDK
Exercise: Create a custom workspace manifest while importing only required projects

Development Environment

Setting up host tools (Git, Python, CMake, Ninja)
Integrating LinkServer, Jlink and other debuggers



NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Debugging workflow with GDB
VSCode integration (tasks, debug sessions)
MCUXpresso for VSCode

Exercise: Build, flash and debug using command line and customize IDE

MCUXpresso Config Tools

Overview of the configuration tool suite (Pins, Clocks, Peripherals, Device settings)
How Config Tools integrate with MCUXpresso SDK and West builds
Generating initialization code (pin_mux.c/h, clock_config.c/h, peripheral setup)
Using the graphical interface to configure GPIO, UART, and system clocks
Exporting configuration files and re-integrating them into applications
Limitations and best practices when combining with Kconfig/prj.conf

Exercise: Customize existing boards

Customization and Extensions

Custom manifests for minimal projects
Writing custom West commands
Modifying in-tree applications (LED blinky)
Freestanding applications outside the SDK

Exercise: Extend west commands
Exercise: Create a custom freestanding application

Second day

Integration and Analysis

Adding FreeRTOS using West
Multicore projects with Sysbuild
SPDX analysis and compliance check
Memory footprint and Puncover analysis

Exercise: Extend the workflow with FreeRTOS and advanced tools
Exercise: Using west memory analysis features

Kconfig and Project Configuration

Configuration phase in West/CMake
Kconfig framework:

Enabling/disabling global features
Tuning and conditional compilation
Default values and symbol dependencies

Role of prj.conf and fragments
Interactive configuration (menuconfig, guiconfig)
Generated config files: .config, mcux_config.h
Writing new Kconfig entries (symbols, menus, defaults)
Limitations and best practices
MCUXpresso SDK specifics (custom prefixes, no CONFIG_ macros)

Exercise: Customize prj.conf
Exercise: Create and use custom kconfig options

Developing Custom Boards

Board Architecture Overview
Structure and components of a board port
Creating a New Board Definition
Configuring custom boards
Board debuggers
Linker Script



NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Integrating the custom Board into the SDK
Exercise: Write a custom board

External MCUX Modules

Why to use modules?
Module structure
Out-of-tree module
Module’s YAML
Module CMakeLists.txt

Exercise: Create a custom library module

Cortex-M resources used by FreeRTOS

Cortex-M Architecture Overview
Two stacks pointers
Different Running-modes and Privileged Levels
MPU Overview
Systick Timer Description
ARMv8-M evolutions

Exception / Interrupt Mechanism Overview
Interrupt entry and return Overview
SVC / PendSV / Systick Interrupt Presentation

Developing with the IDE
Exercise: Interrupt Management on Cortex-M

Third day

Introduction to Real Time

Base real time concepts
The Real Time constraints
Multi-task and real time

Element of a real time system

Tasks and Task Descriptors
Context Switch
Task Scheduling and Preemption

Tick based or tickless scheduling
Scheduling systems and schedulability proof
Scheduling through FreeRTOS

Exercise: Implement a Context Switch routine

FreeRTOS Task Management

The Task life-cycle
Creating Tasks
Task Priorities
Task States
The idle task
Delays
Changing Task Priority
Deleting Tasks
Suspending Tasks
Kernel Structures
Thread Local Storage
Kernel Interrupts on Cortex-M
Scheduling Traces



NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Visual trace diagnostics using Tracealyzer
Exercise: Managing tasks

Fourth day

Memory Management in FreeRTOS

Memory management algorithms
FreeRTOS-provided memory allocation schemes

Allocate-only scheme
Best-fit without coalescing
Thread-safe default malloc

Checking remaining free memory
Adding an application-specific memory allocator
Memory management errors
Stack monitoring

Exercise: Enhance the memory manager for memory error detection
Exercise: Detect stack overflow

Resource Management with FreeRTOS

Critical sections
Critical sections
Suspending (locking) the scheduler

Mutual Exclusion
Spinlocks and interrupt masking
Mutex or Semaphore
Recursive or not recursive mutexes
Priority inversion problem
Priority inheritance (the automatic answer)
Priority ceiling (the design centric answer)

Gatekeeper tasks
Exercise: Implement mutual exclusion between two tasks

Synchronization Primitives

Introduction
Waiting and waking up tasks
Semaphores
Events
Mailboxes

FreeRTOS Binary Semaphores
FreeRTOS Queue Management

Creation
Sending on a queue
Receiving from a queue
Data management
Sending compound types
Transferring large data

Queue sets
Event Groups
Task Notifications

Exercise: Synchronizing a task with another one through queues
Exercise: Synchronizing a task with another one through binary semaphores



NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Fifth day

Parallelism Problems Solutions

Parallel programming problems
Uncontrolled parallel access
Deadlocks
Livelocks
Starvation

Exercise: The producer-consumer problem, illustrating (and avoiding) concurrent access problems
Exercise: The philosophers’ dinner problem, illustrating (and avoiding) deadlock, livelock and starvation
Exercise: The readers-writer problem, illustrating complex concurrent access solving

Interrupt Management

Need for interrupts in a real time system
Software Interrupt
Time Interrupts
Device Interrupts

Level or Edge interrupts
Hardware and Software acknowledge
Interrupt vectoring
Interrupts and scheduling
Deferred interrupt processing through FreeRTOS

Tasks with interrupt synchronization
Using semaphores within an ISR
Counting semaphores
Using queues within an ISR

FreeRTOS interrupt processing
Writing ISRs in C
Interrupt safe functions
Interrupt nesting

Exercise: Synchronize Interrupts with tasks

Software Timer

The Timer Daemon Task
Timer Configuration
One-shot / Auto-reload Timer
Software Timer API

Exercise: Use Software Timers

Renseignements pratiques

Inquiry : 5 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Thursday 23 October, 2025 at :
https://www.ac6-formation.com/en/

https://www.ac6-formation.com/en/

