NR3 - NXP + FreeRTOS + West

FreeRTOS with NXP MCUXpresso

Objectives

o Understand MCUXpresso SDK (MCUXSDK) structure
o Manage multi-repository projects using Zephyr West
« UseKconfig and prj.conf for configuration
o Create and integrate custom boards
o Extend projects with FreeRTOS
o Get an overview of Cortex-M architecture
o Discover the concepts of real time multitasking
o Understand Real Time constraints
o Understand the FreeRTOS architecture
o Discover the various FreeRTOS services and APIs
o Learn how to develop, debug and trace FreeRTOS applications
o Best practices for large MCUXpresso/FreeRTOS projects

Prerequisite

« C Language knowledge (see for example our L2 training course)
« Familiarity with Git and command-line tools

Course Environment

« Theoretical course

o PDF course materia (in English) supplemented by a printed version for face-to-face courses.

o Online courses are dispensed using the Teams video-conferencing system.

o Thetrainer answers trainees questions during the training and provide technical and pedagogical assistance.
« Practical activities

o Practical activities represent from 40% to 50% of course duration.

o Code examples, exercises and solutions

o For remote trainings:

P One Online Linux PC per trainee for the practical activities.

P Thetrainer has access to trainees Online PCs for technical and pedagogical assistance.

P QEMU Emulated board or physical board connected to the online PC (depending on the course).

P Some Labs may be completed between sessions and are checked by the trainer on the next session.

o For face-to-face trainings:

P One PC (Linux ou Windows) for the practical activities with, if appropriate, atarget board.

P One PC for two trainees when there are more than 6 trainees.

o For onsite trainings:

P Aninstallation and test manual is provided to allow preinstallation of the needed software.

P Thetrainer come with target boards if needed during the practical activities (and bring them back at the end of the course).
« Downloadable preconfigured virtual machine for post-course practical activities
« At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if

needed


/

NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Target Audience

« Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

« The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or

by the trainee himself in the exceptional case of an individual trainee.

« Trainee progressis assessed in two different ways, depending on the course:

o For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.

o Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated

the points presented

« Attheend of the training, each trainee receives a certificate attesting that they have successfully completed the course.
o Inthe event of a problem, discovered during the course, dueto alack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Introduction to MCUXpresso SDK

SDK structure and components
Toolchains, CMake and Ninjaintegration
Application structure and examples

West Tool

Exercise: Getting started with West and MCUXpresso SDK

Overview
Application components and structure
o Application
o Modules
o West workspace
Why West? Problems solved
West as a meta-tool: repository + commands
Alternatives (git submodules, repo) and limitations
West
o West structure
o Using west
o West manifest
o West commands
West topologies
Anatomy of west.yml
Specific commands and common extensions
o Init, update, list, config
o Build, debug, attach, flash
o Other common commands
Extending West with custom commands

First day

Exercise: Create a custom workspace manifest while importing only required projects

Development Environment

« Setting up host tools (Git, Python, CMake, Ninja)
« Integrating LinkServer, Jink and other debuggers



NR3 - NXP + FreeRTOS + West

« Debugging workflow with GDB
« VSCode integration (tasks, debug sessions)
o« MCUXpresso for VSCode
Exercise: Build, flash and debug using command line and customize IDE

MCUXpresso Config Tools

« Overview of the configuration tool suite (Pins, Clocks, Peripherals, Device settings)
« How Config Tools integrate with MCUXpresso SDK and West builds
« Generating initialization code (pin_mux.c/h, clock_config.c/h, peripheral setup)
« Using the graphical interface to configure GPIO, UART, and system clocks
« Exporting configuration files and re-integrating them into applications
« Limitations and best practices when combining with Kconfig/prj.conf
Exercise: Customize existing boards

Customization and Extensions

o Custom manifests for minimal projects
« Writing custom West commands
« Modifying in-tree applications (LED blinky)
« Freestanding applications outside the SDK
Exercise: Extend west commands
Exercise: Create a custom freestanding application

Second day

Integration and Analysis

o Adding FreeRTOS using West

« Multicore projects with Sysbuild

o SPDX analysis and compliance check

« Memory footprint and Puncover analysis
Exercise: Extend the workflow with FreeRTOS and advanced tools
Exercise: Using west memory analysis features

Kconfig and Project Configuration

« Configuration phase in West/CMake
o Kconfig framework:
o Enabling/disabling global features
o Tuning and conditional compilation
o Default values and symbol dependencies
« Roleof prj.conf and fragments
« Interactive configuration (menuconfig, guiconfig)
« Generated config files: .config, mcux_config.h
o Writing new Kconfig entries (symbols, menus, defaults)
o Limitations and best practices
o MCUXpresso SDK specifics (custom prefixes, no CONFIG_ macros)
Exercise: Customize prj.conf
Exercise: Create and use custom kconfig options

Developing Custom Boards

« Board Architecture Overview

« Structure and components of a board port
« Creating a New Board Definition

« Configuring custom boards

« Board debuggers

o Linker Script

Thursday 23 October, 2025



NR3 - NXP + FreeRTOS + West

« Integrating the custom Board into the SDK
Exercise: Write a custom board

External MCUX Modules

« Why to use modules?
« Module structure
« Out-of-tree module
o Module sYAML
o Module CMakelL ists.txt
Exercise: Create a custom library module

Cortex-M resources used by FreeRTOS

« Cortex-M Architecture Overview
o Two stacks pointers
o Different Running-modes and Privileged Levels
o MPU Overview
o Systick Timer Description
o ARMvV8-M evolutions
o Exception/ Interrupt Mechanism Overview
o Interrupt entry and return Overview
o SVC/PendSV / Systick Interrupt Presentation
« Developing with the IDE
Exercise: Interrupt Management on Cortex-M

Introduction to Real Time

« Basereal time concepts
« The Real Time constraints
« Multi-task and real time

Element of a real time system

o Tasksand Task Descriptors
« Context Switch
o Task Scheduling and Preemption
o Tick based or tickless scheduling
« Scheduling systems and schedul ability proof
« Scheduling through FreeRTOS
Exercise: Implement a Context Switch routine

FreeRTOS Task Management

o TheTask life-cycle

o Creating Tasks

o Task Priorities

o Task States

o Theidletask

o Delays

« Changing Task Priority
o Deleting Tasks

« Suspending Tasks

« Kernel Structures

« Thread Local Storage
« Kernel Interrupts on Cortex-M
« Scheduling Traces

Third day

Thursday 23 October, 2025



NR3 - NXP + FreeRTOS + West

« Visual trace diagnostics using Tracealyzer
Exercise: Managing tasks

Fourth day

Memory Management in FreeRTOS

« Memory management algorithms
o FreeRTOS-provided memory allocation schemes
o Allocate-only scheme
o Best-fit without coalescing
o Thread-safe default malloc
« Checking remaining free memory
« Adding an application-specific memory allocator
« Memory management errors
« Stack monitoring
Exercise: Enhance the memory manager for memory error detection
Exercise: Detect stack overflow

Resource Management with FreeRTOS

« Critical sections
o Critical sections
o Suspending (locking) the scheduler
o Mutual Exclusion
o Spinlocks and interrupt masking
o Mutex or Semaphore
o Recursive or not recursive mutexes
o Priority inversion problem
o Priority inheritance (the automatic answer)
o Priority ceiling (the design centric answer)
o Gatekeeper tasks
Exercise: Implement mutual exclusion between two tasks

Synchronization Primitives

o Introduction
o Waiting and waking up tasks
o Semaphores
o Events
o Mailboxes
o FreeRTOS Binary Semaphores
o FreeRTOS Queue Management
o Creation
o Sending on aqueue
o Receiving from a queue
o Data management
o Sending compound types
o Transferring large data
o Queue sets
o Event Groups
o Task Notifications
Exercise: Synchronizing a task with another one through queues
Exercise: Synchronizing a task with another one through binary semaphores

Thursday 23 October, 2025



NR3 - NXP + FreeRTOS + West Thursday 23 October, 2025

Fifth day

Parallelism Problems Solutions

o Parallel programming problems

o Uncontrolled parallel access

o Deadlocks

o Livelocks

o Starvation
Exercise: The producer-consumer problem, illustrating (and avoiding) concurrent access problems
Exercise: The philosophers' dinner problem, illustrating (and avoiding) deadlock, livelock and starvation
Exercise: Thereaders-writer problem, illustrating complex concurrent access solving

Interrupt Management

« Need for interruptsin areal time system
o Software Interrupt
o Time Interrupts
o Device Interrupts

o Level or Edgeinterrupts

« Hardware and Software acknowledge

« Interrupt vectoring

o Interrupts and scheduling

« Deferred interrupt processing through FreeRTOS
o Taskswith interrupt synchronization
o Using semaphores within an ISR
o Counting semaphores
o Using queues within an ISR

o FreeRTOS interrupt processing
o Writing ISRsinC
o Interrupt safe functions
o Interrupt nesting

Exercise: Synchronize Interrupts with tasks

Software Timer

« The Timer Daemon Task

o Timer Configuration

« One-shot / Auto-reload Timer

« Software Timer API
Exercise: Use Software Timers

Renseignements pratiques

Inquiry : 5 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A
Centre de Formation, Siége social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10
Last site update: Thursday 23 October, 2025 at :

https://lwww.ac6-formation.com/en/



https://www.ac6-formation.com/en/

