
RM4 - Cortex-M7 implementation

This course covers the Cortex-M7 V7E-M compliant CPU

Objectives

This course is split into 3 important parts:
Cortex-M7 architecture
Cortex-M7 software implementation and debug
Cortex-M7 hardware implementation.

Through a tutorial, the Cortex-M7 low level programming is explained, particularly the ARM linker parameterizing and some
tricky assembly instructions.
Note that attendees can replay these labs after the training.
The course also indicates how to use caches and TCMs which are new units with regard to Cortex-M4.
The course also details the hardware implementation and provides some guidelines to design a SoC based on Cortex-M7, taking
benefit of concurrent AXI/AHB transactions.
An overview of the Coresight specification is provided prior to describing the debug related units.

A more detailed course description is available on request at training@ac6-training.com

Prerequisites and related courses

Our course reference RI0 - AXI3 / AXI4 INTERCONNECTcourse details the operation of AXI4 bus.
Contents can adapted when attendees have already the knowledge of Cortex-M4.

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version for face-to-face courses.
Online courses are dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed by quizzes offered at the end of various sections to verify that the trainees have assimilated the
points presented
At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.

In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

/
mailto:training@ac6-training.com
https://www.ac6-formation.com/en/cours.php/cat_ARM/ref_RI0/axi3-axi4-interconnect


RM4 - Cortex-M7 implementation Wednesday 7 May, 2025

Plan

FIRST DAY - ARCHITECTURE

INTRODUCTION TO ARM CORTEX-M7

Memory interfaces: TCMs, caches and AHB peripheral port
Fixed memory map
Configuration options
Lock-step implementation

ARM CORTEX-M7 CORE

Highlighting the new features of the V7E-M architecture
In-order superscalar pipeline
Dynamic branch prediction
Bit-banding
System timer
System control block
Detail of Data Processing Unit
Load Store Unit, store buffering

CACHES AND TCMS

Caches
Cortex-M7 cache implementation
Cache maintenance operations
Dynamic read allocate mode, recovering from errors
Store buffer merging
L1 Caches error correcting code

TCMs
Benefit of implementing two separate D-TCM ports
Implementing external ECC for TCMs

SECOND DAY - ARCHITECTURE

ARCHITECTURE OF A SOC BASED ON CORTEX-M7

Internal bus matrix
Accessing ROM
Accessing SRAM
Connecting peripherals
Sharing resources between Cortex-M7 and other CPUs
STM32F7 architecture

EXCLUSIVE RESOURCE MANAGEMENT AND LOW POWER MODES

Atomicity in single processor multiple thread systems
Operation of the Local monitor
Wait For Interrupt
Events

EXCEPTIONS

Exception behavior



RM4 - Cortex-M7 implementation Wednesday 7 May, 2025

Exception-continuable instructions
Non-maskable exceptions
Fault handling MPU faults, external faults
Priority boosting
Reset sequence, initialization requirements

INTERRUPTS

Interrupt entry / exit, timing diagrams
Tail chaining
NVIC registers
Interrupt prioritization
Interrupt handlers
Wake-up Interrupt Controller

THIRD DAY - OPTIONAL UNITS, HARDWARE IMPLEMENTATION

MEMORY PROTECTION UNIT

Device and normal memory ordering
Memory type access restrictions
Memory ordering restrictions
Memory protection overview, ARM v7 PMSA
Fault status and address registers
Region overview, memory type and access control, sub-regions
Region overlapping
Setting up the MPU

FLOATING POINT UNIT

Introduction to IEEE754,
Floating point arithmetic
Cortex-M7 single and double precision FPU
Hardware support for denormals and all IEEE rounding modes
Improving the performance by selection flush-to-zero mode and default NaN mode
Extension of AAPCS to include FP registers
Lazy floating-point context save
Highlighting the new features of FPv5

AXI IMPLEMENTATION

Overview of AXI bus specification, explaining ordering rules
AXI attributes and transactions
Restrictions on AXI transfers

AHB IMPLEMENTATION

Overview of AHB-Lite protocol
AHBP
AHBS

CORTEX-M7 HARDWARE IMPLEMENTATION

Pinout
Clocking and reset, power management
Using an external Wake-up Interrupt Controller (WIC)

L2C-310 LEVEL 2 CACHE



RM4 - Cortex-M7 implementation Wednesday 7 May, 2025

Cache configurability
AXI interface characteristics
Understanding through sequences how cacheable information is copied from memory to level 1 and level 2 caches
Transient operations, utilization of line buffers LFBs, LRBs, EBs and STBs
Power management
Cache event monitoring
Cache lockdown
Interrupt management

FOURTH DAY - DEBUG, SOFTWARE DESIGN

INVASIVE DEBUG

Coresight debug infrastructure, DAP
Cortex-M7 debug features
Halt mode
Vector catching
Monitor mode
Debug event sources
Flash patch and breakpoint features
Data watchpoint and trace
AHB-lite Debug interface
ROM table

NON-INVASIVE DEBUG

Basic ETM operation
Instruction trace principles
Instrumentation Trace Macrocell
DWT trace packets
Time-stamping packets
Instruction tracing, branch packets, exception tracing packets
TPIU components
Embedded Trace Buffer

CROSS-TRIGGER INTERFACE

Purpose of this debug unit
Trigger signals to CTI and Trigger signals from CTI

EMBEDDED SOFTWARE DEVELOPMENT WITH CORTEX-M7

Embedded development process
Application startup
Placing code, data, stack and heap in the memory map, scatterloading
Reset and initialisation
Placing a minimal vector table
Further memory map considerations, 8-byte stack alignment in handlers
Building and debugging your image
Long branch veneers
Coding guidelines when a cache is used

C/C++ COMPILER HINTS AND TIPS FOR Cortex-M7

ARM compiler optimisations, tail-call optimization, inlining of functions
Mixing C/C++ and assembly
Coding with ARM compiler
Measuring stack usage
Unaligned accesses



RM4 - Cortex-M7 implementation Wednesday 7 May, 2025

Local and global data issues, alignment of structures
Further optimisations, linker feedback

THUMB-2 INSTRUCTION SET

Data processing instructions
Branch and control flow instructions
Exception generating instructions
If…then conditional blocks
Stack in operation
Memory barriers and synchronization

CORTEX-M7 DSP INSTRUCTION SET

Multiply instructions
Packing / unpacking instructions
V6 ARM SIMD packed add / sub instructions
SIMD combined add/sub instructions
Multiply and multiply accumulate instructions
SIMD sum absolute difference instructions
SIMD select instruction
Saturation instructions

Renseignements pratiques

Inquiry : 4 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Wednesday 7 May, 2025 at :
https://www.ac6-formation.com/en/

https://www.ac6-formation.com/en/

