
oRT1 - Linux Real-Time and Multi-Core programming

Programming Linux real-time and multi-core systems, avoiding common
pitfalls

Objectives

Discover the concepts of real time multitasking
Understand the specificities of multicore processors
Master concurrent programming

on the same processor
on a multiprocessor system

Understand real time constraints
Determinism
Preemption
Interruptions

Interactions with processor architecture features
Cache
Pipeline
I/O optimizations
Multicore and Hyperthreading

Debug real time applications
Understand the structure of a real time kernel

Labs are conducted QEMU ARM-based board

Prerequisite

Good C programming skills (see our L2 course)
Basic understanding of processor architecture

Course Environment

Theoretical course
PDF course material (in English).
Course dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the
Teams video-conferencing system.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
Eclipse environment and GCC compiler.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

/


oRT1 - Linux Real-Time and Multi-Core programmingWednesday 7 May, 2025

Duration

Total: 30 hours
5 sessions, 5 hours each (excluding break time)
From 40% to 50% of training time is devoted to practical activities
Some Labs may be completed between sessions and are checked by the trainer on the next session

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Session

Introduction to real time

Base real time concepts
The real time constraints
Multi-task and real-time
Multi-core and Hyperthreading

Exercise: Prepare the environment
Exercise: Create a simple context switch routine

Thread safe data structures

Need for specific data structures
Thread safe data structures

Linked lists (simple or double links)
Circular lists
FIFOs
Stacks

Data structure integrity proofs
Assertions
Pre and post-conditions

Exercise: Build a general purpose thread safe doubly linked list

Memory management

Memory management algorithms
Buddy system
Best fit
First fit
Pool management



oRT1 - Linux Real-Time and Multi-Core programmingWednesday 7 May, 2025

Memory management errors
memory leaks
using unallocated/deallocated memory
stack monitoring

Exercise: Write a simple, thread safe, buddy system memory manager
Exercise: Write a generic, multi-level, memory manager
Exercise: Enhance the memory manager for memory error detection
Exercise: Enhance the context switching infrastructure to monitor stack use

Second Session

Elements of a real time system

Tasks and task descriptors
Content of the task descriptor
Lists of task descriptors

Context switch
Task scheduling and preemption

Tick based or tickless scheduling
Scheduling systems and schedulability proofs

Fixed priority scheduling
RMA and EDF scheduling
Adaptive scheduling

Exercise: Write a simple, fixed priority, scheduler

Interrupt management in real time systems

Need for interrupts in a real time system
Time interrupts
Device interrupts

Level or Edge interrupts
Hardware and software acknowledge
Interrupt vectoring
Interrupts and scheduling

Exercise: Write a basic interrupt manager
Exercise: Extend the scheduler to also support real-time round-robin scheduling

Multicore interactions

Cache coherency
Snooping basics
Snoop Control Unit: cache-to-cache transfers
MOESI state machine

Memory Ordering and Coherency
Out-of-order accesses
Memory ordering
Memory barriers
DMA data coherency

Multicore data access
Read-Modify-Write instructions
Linked-Read/Conditional-Write

Multicore synchronization
Spinlocks
Inter-Processor Interrupts

Exercise: Writing a spinlock implementation



oRT1 - Linux Real-Time and Multi-Core programmingWednesday 7 May, 2025

Third Session

Multicore scheduling

Multicore scheduling
Assigning interrupts to processors
Multi-core scheduling

Multicore optimization
Cache usage optimization
Avoiding false sharing
Avoiding cache spilling

Exercise: Study of a multi-core scheduler

Synchronization primitives

Waiting and waking up tasks
Semaphores
Mutual exclusion

Spinlocks and interrupt masking
Mutexes or semaphores
Recursive and non-recursive mutexes
The priority inversion problem
Priority inheritance (the automagic answer)
Priority ceiling (the design centric answer)

Mutexes and condition variables
Mailboxes

Exercise: Implement Semaphores by direct interaction with the scheduler
Exercise: Implement the mutex mechanism
Exercise: Check proper nesting of mutexes and recursive/non-recursive use
Exercise: Implement a priority ceiling mechanism
Exercise: Add Condition variable support to the mutex mechanism

Fourth Session

Avoiding sequencing problems

The various sequencing problems
Uncontrolled parallel access
Deadlocks
Livelocks
Starvation

Exercise: The producer-consumer problem, illustrating (and avoiding) concurrent access problems
Exercise: The philosophers dinner problem, illustrating (and avoiding) deadlock, livelock and starvation

Working with Pthreads

The pthread standard
threads
mutexes and condition variables
Thread local storage

POSIX semaphores
Scheduling

context switches
scheduling policies (real-time, traditional)
preemption

Exercise: Solve the classic readers-writers problem with POSIX threads
Exercise: Maintain per-thread static data for the readers-writers problem



oRT1 - Linux Real-Time and Multi-Core programmingWednesday 7 May, 2025

Fifth Session

Multi-tasking in the Linux kernel

Kernel memory management
"buddy" and "slab" memory allocation algorithms

Kernel task handling
Linux kernel threads

creation
termination

Concurrent kernel programming
atomic operations
spinlocks
read/write locks
semaphores and read/write semaphores
mutexes
sequential locks
read-copy-update
hardware spinlock

Basic thread synchronization
waiting queues
completion events

Hardware clocks
clockevents

Software clocks
delayed execution
kernel timers
high resolution timers

Exercise: Create a kernel-mode execution barrier using kernel synchronization primitives
Exercise: Create a kernel event synchronization object, using basic synchronization primitives

Asymmetric multiprocessing

AMP overview
Architecture
Shared memory
Challenges comparing to SMP

Inter-processor communication
OpenAMP framework

Remoteproc
rpmsg

Exercise: Sending messages between AMP cores demonstration

Renseignements pratiques

Inquiry : 30 hours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Wednesday 7 May, 2025 at :
https://www.ac6-formation.com/en/

https://www.ac6-formation.com/en/

