
RM5 - Cortex-M33 Implementation

This course covers the Cortex-M33 ARMv8 core

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version for face-to-face courses.
Online courses are dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
For remote trainings:
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

For face-to-face trainings:
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisites

Basic understanding of microprocessors and microcontrollers

Course Environment

Labs will be executed on an ARMv8 simulator.
Printed training material is given to attendees during training.
Precise and easy to use, it can be used as a reference afterwards.

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.

/


RM5 - Cortex-M33 Implementation Wednesday 8 May, 2024

Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Day

Introduction to ARMv8-M Architecture

ARM Cortex-M33 processor macrocell
ARMv8-M Programmer’s model
Instruction pipeline
Fixed memory map
Privilege, modes and stacks
Memory Protection Unit
Security extensions
Interrupt handling
Nested Vectored Interrupt Controller [NVIC]
Power management
Debug

ARM Cortex-M33 core

Special purpose registers
Datapath and pipeline
Write buffer
Bit-banding
System timer
State, privilege and stacks
System control block

Architecture of a SoC based on Cortex-M33

Internal bus matrix
External bus matrix to support DMA masters
Connecting peripherals
Sharing resources between Cortex-M4 and other CPUs
Connection to Power Manager Controller

Second day

Embedded Software Development with Cortex-M33

Application startup
Placing code, data, stack and heap in the memory map, scatterloading
Reset and initialisation
Placing a minimal vector table
Further memory map considerations, 8-byte stack alignment in handlers

Exercise: Create a standalone C application displaying data on a serial line

The T32 Instruction Set variant supported on ARMv8M

General points on syntax



RM5 - Cortex-M33 Implementation Wednesday 8 May, 2024

Data processing instructions
Branch and control flow instructions
Memory access instructions
Exception generating instructions
If…then conditional blocks
Stack in operation
Stack limit registers
Exclusive load and store instructions, implementing atomic sequences
Memory barriers and synchronization

Exercise: Create assembly-level functions to implement simple algorithms

Synchronization and Semaphores

Exclusive access instructions
The Local, Global and External monitors
Interaction with exclusive access instructions
Load Exclusive and Store Exclusive usage and constraints

Exercise: Implement atomic variable manipulation using exclusive access instructions
Exercise: Implement spinlocks

Cortex-M DSP Instruction Set

Multiply instructions
Packing / unpacking instructions
V6 ARM SIMD packed add / sub instructions
SIMD combined add/sub instructions, implementing canonical complex operations
Multiply and multiply accumulate instructions
SIMD sum absolute difference instructions
SIMD select instruction
Saturation instructions

Exercise: Code assembly-language optimized data-processing algorithms

Third day

CMSIS DSP support

The CMSIS library framework
The CMSIS DSP intrinsic functions
The optimized CMSIS data-processing functions

Exercise: Recode data-processing functions in C using intrinsics
Exercise: Recode the same using CMSIS high-level data processing functions
Exercise: Compare performance of the various implementations

Floating point Unit

Introduction to IEEE754
Floating point arithmetic
Cortex-M4F single precision FPU
Register bank
Enabling the FPU
FPU performance, fused MAC
Improving the performance by selection flush-to-zero mode and default NaN mode
Extension of AAPCS to include FP registers

Exercise: Enable the FPU and use it for simple floating point algorithms

C/C++ Compiler hints and Tips for Cortex-M33

Mixing C/C++ and assembly
Coding with GCC compiler



RM5 - Cortex-M33 Implementation Wednesday 8 May, 2024

Measuring stack usage
Unaligned accesses
Local and global data issues, alignment of structures
Further optimisations, linker feedback

Exercise: Measure stack usage of a program
Exercise: Place a user-defined data structure at a fixed address

Exceptions

Exception behavior, exception return
Non-maskable exceptions
Privilege, modes and stacks
Fault escalation
Priority boosting
Vector table

Exercise: Manage synchronous exceptions to simplify FPU usage
Exercise: Manage the SVC exception to switch between user and privileged modes

Fourth day

Interrupts

Basic interrupt operation, micro-coded interrupt mechanism
Interrupt entry / exit, timing diagrams
Interrupt stack
Tail chaining

Interrupt response, pre-emption
Interrupt prioritization
Interrupt handlers
The Nested Vectored Interrupt Controller (NVIC)

Exercise: Handle a timer interrupt in C or assembly language
Exercise: Manage interrupt masking and nesting between two interrupts

The Security Extension

Security states
Register banking between security states
Stacks and security states
Security Extension and exceptions
Secure state address protection
Secure and Non-Secure states interactions

Secure sate transitions
Function calls from Non-Secure to Secure state
Returning from Secure state

Exceptions and the Security Extension
Handling Secure Exceptions
Handling Non-Secure Exceptions while in the Secure state
Returning from a Non-Secure exception to the Secure state

The Security Attribution Unit
The Implementation Defined Attribution Unit

Exercise: Implement a minimal secure monitor

Memory Protection Unit

Memory types
Access order
Memory barriers, self-modifying code
Memory protection overview, ARM v8 PMSA
Cortex-M33 MPU and bus faults



RM5 - Cortex-M33 Implementation Wednesday 8 May, 2024

Fault status and address registers
Region overview, memory type and access control
Setting up the MPU

Exercise: Use the MPU to protect an area of memory against unintended access

Debugging features

Invasive Debug
Coresight debug infrastructure
Halt mode
Vector catching
Debug event sources
Flash patch and breakpoint features
Data watchpoint and trace
ARM debug interface specification
Coresight components
AHB-Access Port
Possible DP implementations: Serial Wire JTAG Debug Port [SWJ-DP] or SW-DP

Non-Invasive debug
Basic ETM operation
Instruction trace principles
Instrumentation trace macrocell
ITM stimulus port registers
DWT trace packets
Hardware event types
Instruction tracing
Synchronization packets
Interface between on-chip trace data from ETM and Instrumentation Trace Macrocell [ITM]
TPIU components
Serial Wire connection

Renseignements pratiques

Duration : 4 days
Cost : 2860 € HT

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Wednesday 8 May, 2024 at 09:34:31 CEST (Europe/Berlin)
https://www.ac6-formation.com/

https://www.ac6-formation.com/

