
STG - STM32 + FreeRTOS + LwIP

This course covers the STM32 ARM-based MCU family, the FreeRTOS Real
Time OS, the LWIP TCP/IP Stack and/or the EmWin GUI Stack

Objectives

Get an overview on the Cortex-M architecture
Understand the Cortex-M software implementation and debug
Learn how to deal with interrupts
Get an overview on STM32F4 architecture
Describing the units which are interconnected to other modules, such as clocking, interrupt controller and DMA controller
Describing some independent I/O modules like the ADC and GPIOs
Getting started with the ST Drivers to program STM32 peripherals (The STM32Cube Library or ST Standard Peripheral
Library)
Understand the FreeRTOS architecture
Discover the various FreeRTOS services and APIs
Learn how to develop and debug FreeRTOS applications
Getting started with the LwIP TCP/IP stack (Describing the STM32 Ethernet Controller, having a look on porting, describing
the parameterizing, and developing application based on UDP and TCP protocols) (not available for STM32F0 family)
The peripherals overview presented in this course can be detailed upon request (STR9 - STM32 Peripheralscourse)

This course can be based on STM32F4xx, STM32F2xx, STM32F1xx, or STM32F0xx families
On request TouchGFX and EmWin can be added in a specific training

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisites

Familiarity with C concepts and programming targeting the embedded world
Basic knowledge of embedded processors
Basic knowledge of multi-task scheduling
The following courses could be of interest:

AAM - ARM Cortex-M Architecture (v7/v8)course
STR7 - STM32 F4-Series implementationcourse

/
https://www.ac6-formation.com/en/cours.php/cat_RT/ref_STR9/stm32-peripherals
https://www.ac6-formation.com/en/cours.php/cat_RT/ref_AAM/arm-cortex-m-architecture-v7-v8
https://www.ac6-formation.com/en/cours.php/cat_RT/ref_STR7/stm32-f4-series-implementation


STG - STM32 + FreeRTOS + LwIP Tuesday 13 May, 2025

L2 - C language for Embedded MCUscourse
L3 - Embedded C++course
STR9 - STM32 Peripheralscourse

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Day

Cortex-M Architecture Overview

V7-M Architecture Overview
Core Architecture

Harvard Architecture, I-Code, D-Code and System Bus
Write Buffer
Bit-Banding
Registers (Two stacks pointers)
States
Different Running-modes and Privileged Levels
System Control Block
Systick Timer
MPU Overview

Programming
Alignment and Endianness
CMSIS Library

Exception / Interrupt Mechanism Overview
Vector Table
Interrut entry and return Overview
Tail-Chaining
Pre-emption (Nesting)
NVIC Integrated Interrupt Controller
Exception Priority Management
Fault escalation

Debug Interface
Exercise: Becoming familiar with the IDE and clarifying the boot sequence
Exercise: Cortex-M4 Mode Privilege (with CMSIS library)
Exercise: Cortex-M4 Exception Management (put in evidence tail-chaining/nesting)
Exercise: Cortex-M4 MPU

STM32F4 MCUs Architecture Overview

https://www.ac6-formation.com/en/cours.php/cat_RT/ref_L2/c-language-for-embedded-mcus
https://www.ac6-formation.com/en/cours.php/cat_RT/ref_L3/embedded-c
https://www.ac6-formation.com/en/cours.php/cat_RT/ref_STR9/stm32-peripherals


STG - STM32 + FreeRTOS + LwIP Tuesday 13 May, 2025

ARM core based architecture
Description of STM32Fx SoC architecture
Clarifying the internal data and instruction paths: Bus Matrix, AHB-lite interconnect, peripheral buses, AHB-to-APB bridges,
DMAs
Memory Organization

Flash memory read interface
Adaptive Real-Time memory accelerator, instruction prefetch queue and branch cache
Sector and mass erase
Concurrent access to RAM blocks

SoC mapping
Flash Programming methods
Boot Configuration

Second Day

Reset, Power and Clocking

Reset
Reset sources
Boot configuration, physical remap
Embedded boot loader

Clocking
Clock sources, HSI, HSE, LSI, LSE
Integrated PLLs
Clock outputs
Clock security system

Power control
Power supplies, integrated regulator
Battery backup domain, backup SRAM
Independent A/D converter supply and reference voltage
Power supply supervisor
Brownout reset
Programmable voltage detector

Low power modes
Entering a low power mode, WFI vs WFE
Sleep mode
Stop mode
Standby mode

Exercise: Configure the system to measure the current consumption in different low-power modes
Exercise: How to configure the programmable BOR thresholds using the FLASH option bytes
Exercise: How to enter the Standby mode and wake up from this mode by using an external reset/WKUP pin
Exercise: How to enter the Stop mode and wake up from this mode by using the RTC wakeup timer event or an interrupt

ST Firmware Library Description

DMA

Dual AHB master bus architecture, one dedicated to memory accesses and one dedicated to peripheral accesses
8 streams for each DMA controller, up to 8 channels (requests) per stream
Priorities between DMA stream requests
FIFO structure
Independent source and destination transfer width
Circular buffer management
Double buffer mode
DMA1 and DMA2 request mapping

Exercise: DMA FIFO mode
Exercise: Flash To RAM using DMA



STG - STM32 + FreeRTOS + LwIP Tuesday 13 May, 2025

Hardware implementation

Power pins
Pinout

Pin Muxing, alternate functions
GPIO module

Configuring a GPIO
Speed selection
Locking mechanism
Analog function
Integrated pull-up / pull-down
I/O pin multiplexer and mapping

System configuration controller
I/O compensation cell
External Interrupts / Wakeup lines selection
Ethernet PHY interface selection

External Interrupts
Exercise: Configure an external Interrupt

12-bit Analog-to-Digital Converter

12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Regular channel group vs Injected channel group
Single and continuous conversion modes
Scan mode
External trigger option with configurable polarity for both regular and injected conversions
Discontinuous mode
Analog watchdog
Dual/Triple mode (on devices with 2 ADCs or more)
Configurable delay between conversions in Dual/Triple interleaved mode
DMA request generation during regular channel conversion

Exercise: Get voltage from the potentiometer using, DMA transfer generation, display the result on LCD screen

Optional: Timers Overview

Advanced-control timers TIM1 and TIM8
16-bit up, down, up/down auto-reload counter; 16-bit programmable prescaler
Input Capture, Output Compare, PWM generation, One-pulse mode
Synchronization circuit/ Controlling Timers external signals / Interconnecting several timers
Interrupt/DMA generation

Real Time Clock
Independent BCD timer/counter; 16-bit programmable prescaler
Daylight saving compensation programmable by software
Two programmable alarms with interrupt function
Automatic wakeup unit
Reference clock detection / Digital calibration circuit
Tamper detection

Exercise: How to use DMA with TIM1 Update request to transfer Data from memory to TIM1
Exercise: Configuring the RTC

Third Day

The FreeRTOS source code

Introduction to FreeRTOS
The FreeRTOS architecture and features

Getting FreeRTOS source code
Files and directories structure



STG - STM32 + FreeRTOS + LwIP Tuesday 13 May, 2025

Data types and coding style
Naming conventions

FreeRTOS on the Cortex/M processors

Task Management

Prioritized Pre-emptive Scheduling / Co-operative scheduling
The Task life-cycle

Task Functions
Creating tasks
Using the task parameter
The Task State Machine
Deleting tasks

Task Priorities
Assigning task priorities
Changing task priorities

The idle task
Idle task hook

Blocking a task for a specific delay
Editing the FreeRTOSConfig.h header file
Suspending a task
The Kernel Structures Overview
FreeRTOS Debug Capabilities (Hook, Trace)
Visual trace diagnostics using Tracealyzer

Exercise: Understand the notion of task context and the context switch mechanism
Exercise: Create a debug configuration to debug your program using a FreeRTOS-aware debugging mode
Exercise: Periodic Tasks
Exercise: Task Statistics

Memory Management

FreeRTOS-provided memory allocation schemes
Choosing the heap_x.c file depending on the application

Adding an application-specific memory allocator
Checking remaining free memory
Stack monitoring
Dimensioning Stack and Heap

Exercise: Direct Context Switch measurement and Stack Overflow Detection
Exercise: Debugging memory

Fourth Day

Queue Management

Blocking on queue Reads
Blocking on queue Writes
Queue Creation
Sending on a queue
Receiving from a queue
Sending compound types
Transfering large data
Queue Set Overview/ Blocking on multiple objects
Semaphores and Events Introduction

Exercise: Synchronizing and communicating between tasks through queues to send datas to a bus communication

Resource Management

Conflict examples
Mutual exclusion



STG - STM32 + FreeRTOS + LwIP Tuesday 13 May, 2025

Critical sections
Disabling the interrupts
Suspending (locking) the scheduler

Mutexes
Mutual exclusion scenario
API functions for Mutexes
Recursive Mutexes
Priority inversion
Priority inheritance
Deadlock

Gatekeeper tasks
Exercise: Readers / Writers Problem
Exercise: Producer / Consumer Problem
Exercise: Understand deadlock and starvation

Interrupt Management

Binary semaphore used for interrupt synchronization
API function for binary semaphore

Counting semaphores
Using queues within an ISR
Interrupt Nesting

Interrupts on Cortex-M
Low Power Support

Exercise: Synchronize Interrupts with tasks
Exercise: Low-Power FreeRTOS Support (Tickless Mode)

Fifth Day

Software Timer

The Timer Daemon Task
Timer Configuration
One-shot / Auto-reload Timer
Software Timer API

Exercise: Understand the use of software timers

FreeRTOS MPU

User Mode and Privilege Mode
Access Permission Attributes

Defining an MPU region
Creating a non-privileged task
Linker configuration
Practical Usage Tips

STM32 Fast Ethernet Controller Overview

Architecture of the MAC
Connection to PHY, RMII / MII
Transmit and receive FIFO threshold setting
Multicast and unicast address filtering
Management interface
Buffer and Buffer Descriptor organization
Low level Drivers for STM32

LwIP TCP/IP Stack Presentation

Overview



STG - STM32 + FreeRTOS + LwIP Tuesday 13 May, 2025

Buffer and memory management
LwIP configuration options
Network interfaces
MAC and IP address settings
IP processing
UDP processing
TCP processing
Interfacing the stack
Application Program Interface (API)

Standalone
Netconn and BSD socket library

STM32/FreeRTOS Port Overview
Exercise: Run an http server application based on Netconn API of LwIP TCP/IP stack
Exercise: http server application based on Socket API of LwIP TCP/IP stack
Exercise: TCP Echo Client/Server
Exercise: In-Application Programming (IAP) over Ethernet using TFTP or HTTP

Optional : EmWin GUI Stack Presentation

Library and package description
How to use the library

Configuration
Initialization
Core functions
Developing a multi-task application with EmWin
Working with some widgets (as the Windows, Buttons, Multipage, Image, ListBox, CheckBox)
Using the EmWinGuiBuilder software

Exercise: Getting started with the emWin stack, create a GUI to control input/output from the touch screen

Optional: TouchGFX

Basic Application Development
Advanced Application Development
Application Configuration
Widgets
Integration
Getting Started with CubeMX and TouchGFX
Deploying your application using ST-Link

Exercise: How to configure and use TouchGFX under FreeRTOS (Demo)

Renseignements pratiques

Inquiry : 5 days
Prochaines sessions : from 30th of June to 4th of July, 2025 - Ac6 - Courbevoie / Paris (France)

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 13 May, 2025 at 14:02:43 CEST (Europe/Berlin)
https://www.ac6-formation.com/en/

https://www.ac6-formation.com/en/

